Menu

05.03.2010

Remote laser cutting of sheet metal

Thanks to its high flexibility with regard to component geometry it is particularly suitable for the production of prototypes and small series.

Fitted with a 1 kW single mode fiber laser and a mirror scanner, the unit can machine components in the millimeter range at cycle times of less than 100 ms. This short processing time is achieved by dispensing with mechanical movement axes. Beam movement is performed by mirrors mounted on highly dynamic galvanometer drives. Cuts of 20 µm are achieved with suitable optical systems, so that precision parts, such stator sheets for electric motors, can be processed rapidly and accurately.

Cost advantages and flexibility for small series

Fine cutting with remote laser is particularly interesting as a means to save costs in the production of prototypes and small series, because it offers much greater flexibility and freedom with regard to component geometry than conventional methods such as milling or punching. Expensive tool changes are not required.

Combined punching-bending processes are a good example. In this case, the punch geometry must first be iteratively matched to the bending process. In conventional production methods the manufacture and adaptation of the punching tools entails high costs and long waiting times. Remote laser cutting offers the advantage that the component geometry can be optimized, within a very short time and at virtually no cost, to achieve the desired shape. In contrast to conventional punching systems, the laser unit is ready to use straightaway. There are no long lead times. Remote laser cutting thus makes it possible to shorten development times and increase process flexibility while reducing costs.

The research engineers based in Aachen are able to put together an installation to match the needs of the specific process by combining predefined modules. A suitable optical system with matching laser beam source is integrated in a machine housing and, if necessary, fitted with additional sensors or a clamping device. The system can be used for inscribing, plastic welding, microstructuring, remote laser cutting and metal welding.